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NOTATION

a = (a,, a2, a3, a4) quaternion

A = (Aij) 3 dimensional orthogonal
transformation matrix

A 24 x 24 matrix multiplying states
in linear dynamical differential
equations

A3x3  3 x 3 submatrix of A for y states

A 9  9 x 9 submatrix of A for z states

A1 2 1 2  12 x 12 submatrix of A for q states

b = (bl, b2 , b3, b4 ) quaternion

b. = (0, bil, bi2, bi3) quaternion defining position of
accelerometer i relative to the

center of the accelerometer array
in accelerometer array frame

i ill 2' 3 transform of bi to the laboratory
reference frame
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NOTATION (continued)

ci  (0, cil, ci2, c1) quaternion giving input axis directionof accelerometer i in accelerometer

array frame

c. = (0, cil, ci 2 , ci3) transform of c. to the laboratoryreference frame

d, d' length of accelerometer array
arms and offset of seismic masses
from center lines of arms

D diagonal scaling matrix

E probability expectation operator

exp matrix exponentiation

ei  (0, eil, ei2, e D fixed position coordinates of fiduciali relative to the accelerometer array

frame

0i = (0, f oil' f oW fo i3 initial position coordinates offiducial i relative to sled frame

f = (0, filI fi2' f i3) position coordinates of fiducial irelative to sled frame at time t

F nonlinear state transition function

g acceleration due to gravity
(980.3 cm/s 2)

H nonlinear observables functions
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NOTATION (continued)

Euler angle (angle betweei,
Z and Z' axes)

Iidentity matrix in Kalman filter
formulas

state Jacobian partial derivative
matrix

K Kalman filter gain matrix

L observables Jacobian partial
derivative matrix

M general nonsymmetric matrix

Pf state covariance matrix for forward
Kalman filter

P Pb state covariance matrix for backward
Kalman filter

P state covariance matrix for Kalman
smoother

Pstate covariance matrix before
quaternion normalization

P (Pl, P2, P3, P) quaternion specify the rotation
from the sled frame to the laboratory
track frame (dimensionless)

q (q, q2, q3, q4) quaternion specifying the rotational
position of the accelerometer array
frame relative to the sled frame
(dimensionless)
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NOTATION (continued)

(q5, q6 , q7, q8) quaternion specifying the rotational
velocity of the accelerometer array
frame relative to the sled frame (s- 1)

(q9, q10, q11, q12) quaternion specifying the rotational
acceleration of the accelerometer
array frame relative to the sled frame
(s- 2 )

(q1, q12) (ql . , q12) before normalization

(Qij) covariance matrix of W (integral ofzero mean Gaussian white noise)

r zero mean Gaussion noise in observation

R covariance matrix of r

r (r) body fixed vector (corresponding
quaternion)

s (S) body fixed vector (corresponding
quaternion)

s 
observable vector
(C1I, ..- " " CBfa ,b' YlF Y20

61, 62, 6 3)T

S general symmetrix matrix

t time (seconds)

to initial time (seconds)
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NOTATION (continued)

tk time at kth step of Kalman
filter-smoother (seconds)

T superscript denoting matrix transpose

U scaled symmetric matrix

v (0, vI, v2, v3) quaternion with 0 real part (vector

w (w, , w24 ) zero mean Gaussian white noise in
the dynamics

W integral of zero mean Gaussian
+white noise w

x (x1, x 2 4 ) state vector
(YIP Y2, Y3, z1,., z9,

qj, ... , q24)
resulting from Kalman smoother

xf state vector resulting from Kalman
forward filter

xb state vector resulting from Kalman
backward filter

x state vector before quaternion
normalization

(X, Y, Z) accelerometer array reference system

(X, Y, Z) sled reference system

(X, Y, ) laboratory (track) reference system
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NOTATION (continued)

Y1, Y2, Y3 translational position, velocity,
and acceleration of the sled frame
relative to the track frame
(cm, cm/s, cm/s 2)

z1, Z2, z3  translational position of the
accelerometer array frame relative
to the sled frame (cm)

z20, z20, z30  initial position of the
accelerometer array frame relative
to the sled frame (cm)

Z4, z5, Z6 translational velocity of
accelerometer array frame relative
to the sled frame (cm/s)

Z7, z8, z9  translational acceleration of

accelerometer array frame relative
to the sled frame (cm/s2)

real number

O. itheoretical value of linear
accelerometer i output (g), or
angular accelerometer output
(rad/s2)

8.. theoretical value of photographic
observable j of fiducial i
(j = 1, 2, 3) (inches)

y, Y theoretical values of acceleration
1 2 and velocity of sled relative to

track observables (g, ft/s)

' 11
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NOTATION (continued)

61, 62, 63 theoretical values of perfect
quaternion constraint observables
(dimensionless)

6.. Kronecker delta1)

A. small adjustment to the state vector
for checking partial derivatives by
the difference method

68 infinitesimal rotation angle

T)i  (0, nill ni2 n i3) specific acceleration quaternion
of accelerometer i relative to the

accelerometer array frame

rotation angle

Ascale factor for accelerometer
a observable (conversion from

cm/s2 to g = 1/980.3)

Ab scale factor for photographic
observable (conversion from an
to inches = 2.54)

A scale factor for sled velocity
observable (conversion from cm/s
to ft/s = 1/(2.54 x 12))

Pi bias in linear accelerometer i
output (value to be subtracted
from measurement to yield specific
acceleration) (g)
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NOTATION4 (continued)

Pi0 average value of accelerometer i
output in its initial stationary
orientation

p length of a quaternion

(0, , 2, 3) angular acceleration quaternion
in the accelerometer frame

0 linear state transition matrix

Euler angle

wEuler angle

w (0, w1, W2, W3) angular velocity quaternion in the
accelerometer reference frame

w (0, w", w2, w3) angular velocity quaternion in the
laboratory reference frame

w (0, wI, W2, w3) angular velocity quaternion

w ( 1, w2 , w3) angular velocity vector
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SECTION 1

INTRODUCTION

Human response to impact environments is investigated using

instrumented anthropomorphic dummies, animal surrogates, cadavers,

and human volunteers. This report addresses a new technique for

analyzing the data from such experiments.

In a sled impact experiment, the dummy, animal, cadaver, or human

subject is seated on a sled, which is given a sudden impetus down a track.

by a piston. Traditional observables used to analyze the resulting

motion include accelerometer and tachometer velocity measurements of

the motion of the sled relative to the track, photographic measurements

of the motion of fiducials attached to the subject relative to the sled,

and the output of linear piezoresistive accelerometers attached to the

subject's body.

Because of the importance of separating translational and

angular motions, linear accelerometer arrays are employed. However,

small percentage errors in measuring a large linear accelerometer

output could prove to be a large percentage error in the difference

signal between two accelerometers, from which angular acceleration is

derived. Thus, it is desirable to have light-weight instrumentation

which can measure angular acceleration directly.

Even without angular accelerometers, improvements can be made

in the traditional data analysis techniques. The accelerometer array

data is currently analyzed separately from the photographic data, with

the latter being used, at best, to provide an ad hoc correction to the

14
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trajectory determined from the accelerometer array data. The more

modern technique is to process all the data simultaneously through a

Kalman filter to obtain the trajectory which best fits the accelerometer

array, photographic, and sled accelerometer and tachometer velocity

data.

The situation is analagous to navigating a cruise missile by

simultaneously combining inertial instrument and external landmark

sighting data. In the case of a sled impact experiment, the

photographic camera fixed to the sled is looking at the subject,

rather than on the vehicle looking at an external reference.

In order to simultaneously combine the various observables in a

sled impact experiment, this report develops a quaternion-Kalman filter

model of the motions in such an experiment, and analyzes actual

experimental data wit, this technique. Head motion is particularly

addressed. Covariance analyses are performed to investigate the

possible accuracy improvement that could be obtained with an angular

accelerometer. The Fortran computer program written to carry out this

work is one of the deliverables of this contract.

1.1 ANALYSIS TECHNIQUE

Formulas are derived for the quaternion representation of the

rotational motion of one reference frame relative to another, and for

the corresponding angular velocity and acceleration. Unlike an Euler

angle representation, the quaternion representation is valid for arbitrary

angular motions, except that a constraint is required to restrict the

four quaternion degrees of freedom to the three degrees of freedom

existing in a rotation.

A state space dynamical system model is derived for an impact

sled experiment. The state variables in units of centimeters, seconds,

and radians are:

15
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(a) Translational position, velocity, and acceleration of the

sled frame relative to the track (three states);

(b) Translational position, velocity, and acceleration of an

accelerometer array frame attached to the head relative

to the sled frame (nine states); and

(c) Quaternion rotational position, velocity, and acceleration

of the accelerometer array frame relative to the sled

frame (12 states with 3 constraints).

The state dynamical equations are that the derivative of accleration

(jerk) is equal to white noise.

Formulas are derived for photographic, tachometer, linear accelero-

meter, and ideal angular accelerometer observables in terms of the states,

and for the partial derivatives of the observables with respect to the

states. Kalman filter formulas are presented for the propagation of

the state variables given the observables.

An experiment commences with the subject initially at rest with

a small covariance for the uncertainty in its state initial conditions.

The state is propagated to an observable time by the state dynamical

equations. The state covariance is also so propagated, with the

uncertainty being incremented by the white noise in the dynamics. This

plant noise is a measure as to how much the acceleration can change

between observable times, since the dynamical equations assume constant

acceleration between observable times, except for the white noise.

The state estimate and its covariance are updated using the observables

and the Kalman filter formulas. The state is then propagated to the

next observable time and the process repeated, etc.

The proper weighting of past states and present observables is

determined by the relative size of the propagated state covariance and

the covariance of the observables. Different observable types with

their own units (g, inch, ft/s) can be combined, since the weighting

covariance in the same units creates dimensionless combining terms.

16
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The accelerometer observables are one millisecond apart, whereas

the photographic observables are two milliseconds apart. There can be

different numbers of observables at different observing times. In

particular, if a sample-and-hold is not employed in a real time digital

data acquisition system, then the slew in observable time for the

analog-to-digital conversion of analog piezoresistive accelerometer data

can be taken into account. The accelerometer measurements employed in

this report were recorded on analog tape and played back for conversion

to digital form, so the accelerometer data were at the same time.

The constraints on the quaternion state variables are taken into

account in two ways. First, at each observation update time three

additional perfect quaternion constraint observables for the rotational

position, velocity, and acceleration are added to the real observables.

These perfect constraint observables have zero error, and a form of the

Kalman filter update formulas which allows zero observable covariance

is employed. Second, after state propagation and observable updates,

the quaternion states are normalized with the constraint conditions.

It was attempted to employ a Kalman smoother in fitting the

trajectory to the observables, where the Kalman smoother estimate is

the optimal combination of forward and backward Kalman filter estimates.

The Kalman filter is propagated forward in time from the state initial

conditions. Then the Kalman filter is run backwards from the last

state estimate of the forward filter with completely uncertain

covariance for this last point. It turned out that the backward filter

did not thereby yield good state estimates, because the measurements

at the first and subsequent time points into the past did not give

complete observability into the states. Therefore, it is better to

take presmoothed observables and run the forward Kalman filter starting

with good initial conditions, rather than take raw observables and try

to have the Kalman smoother get the smoothing effect of the past and

future around each point.

17
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Formulas are derived for both lateral and fore-aft (eyes out)

impact sled tests. A quaternion rotation is required for the fore-aft

orientation of the accelerometer array frame relative to the sled frame

as compared to the orientation for the lateral case. The software

implementing the quaternion-Kalman filter model formulas allows

covariance analysis of simulated data as well as fitting to real data.

1.2 ANALYSIS SOFTWARE

Fortran IV software was written implementing the formulas of this

report with extensive internal comments. The software was written, tested,

and run on a large Amdahl (IBM 370-type) computer in such a way that

it should be straightforward to convert it to run on a CDC 6600 computer

at Wright-Patterson Air Force Base. Each subroutine commences with an

IMPLICIT REAL *8 (A-H, O-Z)

statement to force double precision 16 decimal place computations on the

Amdahl computer. These statements would be removed or commented out on

the CDC 6600 and single precision 14 decimal place computations employed.

These and other statements which are expected to require change on a

CDC 6600 are flagged by comment cards with asterisks.

A list of the 31 subroutines in the sled impact data analysis

program is given in Table 1-1. There is a total of 3,107 lines of code,

including comments. The memory required on the Amdahl computer is 268K

bytes. This could be reduced to 200K bytes z 30K CDC 6600 60 bit words

using overlay.

A typical 300 millisecond impact Kalman filter run with data every

millisecond (nine linear accelerometer array, six photographic fiducial

coordinate, and sled accelerometer and tachometer observables) required

2.3 minutes of CPU time on the Amdahl computer, which would be somewhat

greater on a CDC 6600 computer. Changes could be made to the software

to make it slightly more efficient.

18



Table 1-1. Impact sled test Fortran subroutines.

Number
Subroutine Nme

Srte of Description
Lines

AAMAIN 105 Main Program

ANGACL 126 Process Angular Accelerometer Observables

DOT 24 Calculate the Dot Product of Two 3 Vectors

DSTATE 81 Calculate State Transition Jacobian Partial
Derivative Matrix

ERRWGT 78 Alter Individual Observation Errors Using Input
Error Weights

FILTB 328 Backward Kalman Filter and Kalman Smoother

FILTF 274 Forward Kalman Filter

INPUT 547 Read Input Control Parameters for Given Experiment

KALCOV 66 Perform Kalman Filter State Covariance Update

KALGAN 46 Calculate Kalman Filter Gain Matrix

LINACL 196 Process Linear Accelerometer Observables

MATMLT 40 General Matrix Multiplication ABT

MATMUL 40 General Matrix Multiplication AB

OBSERV 136 Process Observations, Including Quaternion
Constraints

PHOTO 11 Process Photographic Fiducial Observables

PNOISE 62 Determine the State Dynamical Plant Noise

QAUTO 48 Quaternion Automorphism

QCONJ 25 Quaternion Conjugate

QNORMX 57 Normalize Quaternion Rotational Position, Velocity,
Acceleration

QNPART 84 Quaternion Normalization Partial Derivatives

QPROD 27 Quaternion Product

QSTRNT 57 Apply Quaternion Constraint to State Vector and
Its Covariance

SCLINV 71 Scale a Symmetric Matrix Before Calling Matrix
Inversion

19
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Table 1-1. Impact sled test Fortran subroutines. (Continued)

NumberSubroutine of Description
Name Lines

STATE 95 Propagate State and Calculate the State Transition
Matrix

SYMADD 27 Symmetric Matrix Addition

SYMINV 104 Symmetric Matrix Inversion In Place

SZMUL 40 Matrix Multiplication SZ

TRACK 68 Process Motion Relative To Track Observables

ZSMUL 40 Matrix Multiplication ZS

ZSZMLT 55 Matrix Multiplication ZTSz

ZSZMUL 55 Matrix Multiplication ZSZT

Total 3,113

Very extensive tests were performed on the software. The

consistency of the state propagation equations and the Jacobian

partial derivatives was checked by the difference method. The

same technique was used for checking observable and partial derivative

formulas for sled accelerometer and tachometer velocity observables,

linear accelerometer and ideal angular accelerometer observables,

photographic observables, and perfect quaternion constraint observables.

Matrix manipulation subroutines were also checked. For example, the

product of a matrix with its calculated inverse was compared with the

identity matrix.

Successful checkout of the Kalman filter code was don. once

the correctness of these various service subroutines was verified.

The ultimate test was that the Kalman filter tracked real data.

A plotting routine was written to display the results of data

analyses. By its nature, such a program is installation specific, so

an equivalent program would have to be specially written for the CDC

20
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6600. Similarly, installation specific software was written to read

magnetic and punched paper tapes containing impact sled test data;

equivalent software would also be required on the CDC 6600.

1.3 FITS TO DATA

Two lateral and two fore-aft (eyes out) impact sled tests were

analyzed with the Kalman filter software. There was a dummy and a

human test for each given type of experiment.

Lightweight Endevco 2264-200 piezoresistive linear accelerometer

arrays were employed. In the lateral impact case there was a nine-accel-

erometer array strapped to the side of the head, and in the fore-aft

impact case, it was strapped to the front of the head. In the fore-aft

experiment only three of the nine outputs were used to simulate the situa-

tion of a three-accelerometer array afixed to the teeth inside the mouth.

This latter arrangement is starting to be used because the accelerometer

array is thereby more firmly attached to the skull than when it is strapped

to the head over the pliable skin.

In the lateral impact tests, the post-fit data residuals show

that the Kalman filter is tracking the observables, which indicates

that it is mathematically working. Some of the residuals are 20 to

30 percent of the size of the 10 g magnitude impact event. Slight

changes in the input values of the coordinates and orientations of

the fiducials and accelerometers relative to each other could cause

a dramatic improvement in the fit performance of the Kalman filter.

There was a three-accelerometer array at the center of the

dummy's head in the dummy lateral impact test. The residuals for

these observables, which were not included in the fit, were as large

as 22 g. Better engineering understanding of the experimental setup

should help improve these Kalman filter predictions.

The fore-aft (eyes out) impact tests had a restricted amount

of data. Only the two coordinates in the impact plane were recorded

for the head photographic fiducials, besides having only three-accelero-

meter array output. The Kalman filter tracked the observables until

21
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the start of the impact event, at which point it diverged with some

residuals being greater than 103 g. The cause of this divergence

requires further investigation.

The covariance simulation mode of the Kalman filter software

was utilized on a lateral impact test to determine the improvement to

be obtained with a three-axis angular accelerometer. However, the real

advantage of an angular accelerometer is to counteract the effect of

piezoresistive accelerometer array dimensional and cross axis biases.

Such bias states would have to be added to the present Kalman filter

to obtain meaningful results from a covariance simulation.

1.4 FURTHER WORK

The sled impact Kalman filter Fortran IV software should be

converted to run on the Wright-Patterson Air Force Base (WPAFB) CDC 6600

computer. The various tests used in debugging the software should be

performed, and the fits to data reported herein repeated. If changes are

made to individual subroutines at The Charles Stark Draper Laboratory, Inc.

(CSDL), they can be incorporated in the CDC 6600 version of the program.

The day-to-day analysis of on-going and past experiments is best

done at WPAFB. Refinements to the analysis technique are most expeditiously

done at CSDL.

It is sound engineering practice to first apply the Kalman filter

tool to accelerometer array data in a more controlled environment than

exists in a sled test. Namely, a special fixture is used to impart known

linear and angular accelerations to an accelerometer array for scale

factor determinations. The data from such calibration tests should be

analyzed with the Kalman filter software. States would have to be added

for scale factors, cross axis sensitivities, misalignments, etc. Besides

checking the model and software in a controlled situation, greater

understanding and more accurate scale factors and other coefficients

will be determined for the accelerometer array.

22
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A more thorough understanding of the coordinates and orientations

in the various experiments should be developed, and the data analyses of

this report repeated to see if the fits can be improved. In particular,

it should be determined how well photographic fiducial data combined with

three-accelerometer mouthpiece array data (rather than nine-accelerometer

array data) can describe head motion in an impact experiment.

The software should be made to handle other experimental orientations

besides lateral and fore-aft impacts. Nonstationary initial conditions

should be tried, such as with a sled traveling down the track and hitting

a barrier, e.g., a water brake.

The presentation of experimental results should be improved. For

example, there should be software to calculate angular velocities and

accelerations at the center of the head and other points beside the

center of the accelerometer array using the quaternion formulation.

The motion of other parts of the body should be addressed. There

are whole body models of greater or lesser complexity with the various

discrete parts attached to each other. A Kalman filter with a greatly

expanded number of states could be devised to simultaneously process

observables of the various body parts using these body models with the

constraint that the body parts are attached to each other. The Kalman

filter technique could also be applied to accelerometer and photographic

observables of the individual body parts without the complexity and

difficulty of considering whole body models.

If the problem of applying the Kalman filter with whole body

models is addressed, then other observables could be employed, such

as body pressure readings on the seat or belt restraints. If an

angular accelerometer is employed, then the angular accelerometer obser-

vable formulas and code should be changed to reflect the characteristics

of the actual rather than ideal instrument

As the sled impact Kalman filter software matures, more formal

documentation should be generated. For the present, the program is to some

extent self-documenting with extensive comments in each subroutine.
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SECTION 2

QUATERNION REPRESENTATION FOR ROTATIONS

2.1 QUATERNION ALGEBRA

A quaternion, a, is a 4-vector:

a (a,, a2 , a 3 , a 4) (1)

where the a. are real numbers (i = 1, ... 4). Addition and multiplica-1

tion of quaternions are defined by:

a + b = (a, + bl, a2 + b 2 , a 3 + b 3 , a4 + b4 ) (2)

a - b = (alb, - a2b 2 - a3b 3 - a4b 4 ,

a1b 2 + a2bI + a3b4 - a4b3,

a1b 3 + a3bl + a4 b2 - a2b4,

a1b4 + a4 b, + a2b 3 - a3b2 ) (3)

Note that a-b is not necessarily equal to b-a. The product of a real

number a and a quaternion a is:

ca = (cal, ca2, ca 3 , ca4 ) (4)

The conjugate a* of a quaternion a is

a* = (a,, a2 , a 3 , a 4)* = (a,, -a2 , -a3 , -a4 ) (5)

so that

(ab)* = b*a*, a** = a (6)

The absolute value squared of a quaternion a is the positive

real number:

IaJ2  = aa* = (a1
2 + a2

2 + a 3
2 + a14

2 , 0, 0, 0,) (7)
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The multiplicative inverse a-1 of a is:

-l= (8)

since

a* : a = (1, o, o, 0) (9)

the quaternion identity. The above properties are summarized by

saying that the quaternions are a noncommutative number field, a fact

originally discovered by Hamilton.

A quaternion number a is a pure real number if a* = a and a pure

quaternion (i.e., real part zero) if a* = -a. For any nonzero quaternion

q the transformation

a - qaq-1  (10)

is called an inner automorphism of the quaternion number field. It

preserves arithmetic operations in the sense that

q(a + b)q -1  = (qaq-1 ) + (qbq- 1) (11)

q(ab)q - 1  = (qaq-1 )(qbq -1 ) (12)

Iqaq-'1 2  = tat 2  (13)

If q' = aq, where a is a real number, then q' and q define the

same inner automorphism. Therefore, we can impose the constraint

qq* = 1 (14)

and the inner automorphism can be written as

a - qaq* (15)

With the constraint Equation (14) there is still a twofold ambiguity

in the sense that q and -q define the same inner automorphism.
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2.2 ROTATIONS IN 3-SPACE

Let v be a quaternion with zero real part, v* = -v. It can be

regarded as a vector in 3-space. If q is any quaternion satisfying

constraint Equation (14), then qvq* also has zero real part. Thus,

v - qvq* (16)

represents a linear transformation into 3-space. Conversely, any

linear transformation (or rotation) of 3-space into 3-space can be

represented by a quaternion inner automorphism Equation (16) [1]*

It is a two-valued representation, in that both q and -q represent

the same linear transformation. The quaternion representation can be

thought of as the square root of a linear orthogonal transformation of

3-space.

The quaternion representation for a rotation only requires one

constraint Euation (14) on its four components. The nine elements

in a 3x3 direction cosine matrix require six constraints to represent

a rotation. The three Euler angle parameters represent a rotation with

no constraints. However, there is the problem of gimbal lock (a partial

derivative matrix singularity for certain values of the angles) and

having dynamical equations involving white noise with sines and cosines

of Euler angles is less tractible than assuming white noise in the

quaternion components.

Given an initial choice for one of the two possible quaternions

representing the initial orientation of the instrument frame [say

(1, 0, 0, 0)], the choice for time increments after the initial time

is defined by continuity.

2.3 CORRESPONDENCE WITH MATRICES

An explicit expression for automorphism Equation (15) is by

Equation ('):
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qaq* = [(ql2 + q2 
2 + q32+ q4 

2)a1 ,

(q12 + q22- q3 2 - q4 
2)a2 + 2(q2q3 -qlq 4ia3

+ 2(qlq 3 + q2q4)a4,

2(qlq 4 + q2q3)a2 + (q1
2 _ q2 

2 
41 q3

2 
-q4

2)a3

- + 2(q3q4 - qlq 2 )a4,

2(q2q4 -qlq 3)a2 + 2(qlq 2 + q3q4)a3

+ (q12 -q 2 2- q3 
2 _ qi4

2)a4] (17)

By Equations (7) and (14), al is left fixed. In particular, as proved

above, a 3-vector with a, 0 is mapped into a 3-vector.

By Equation (17) the transformation matrix corresponding to the

vector transformation defined by a quaternion q is

(qj 2 + q222(q2q3 - qjq4) 2(qlq3 + q2q4)

-q3
2 _q 4 

2)

2(qlq 4 + q2q3) (q12 - q2 2  2(q3q4 - qjq2)

+ q3 
2 _q 4

2)

2(q2q4 - qjq3) 2(qlq2 + q3q4) (q2 - q22(18)

- q 3 
2 + q4 

2

As mentioned above, q and -q map into the same linear transformation.

Infinitessimal rotations by angles 601, 602, 603 about the

three coordinate axes yield a transformation matrix:

1 603 -662

-603 1 601

602 -6o1 1 (19)
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Therefore, the quaternion corresponding to this infinitessimal transfor-

mation is:

q _2(1 -2- -2) (20)

2 2

or -q, where the squares of the small angles: in radians are ignored.

Let 8. be a finite rotation angle about coordinate direction i.

The rotation matrix and rotation quaternion for each such finite rotation

are:

0 Cos 61 sin 81 *-+ q (cos - , -sin 0, 0)

2 '

0 -sin 81 cos 61 (21)

COS 62  0 sin 821

01 0 +-. q =(cos-, 0 sine, 0)

-sin 82 0 cos 82 (22)[O eo 3 sin 83 0 1
-sin 83 cos 83 0 4-+ q (cos 23, 0, 0, -sin ?e)

0 0 1 (23)

or -q in each case.

An Euler angle transformation matrix can be expressed as the

product of three simple rotation matrices such as above. Namely, let

(X, Y, Z) be one coordinate system and (X', Y', Z') another with Euler

angles given in Figure 2-1:

= angle between the X axis and the intersection

of the (X', Y') plane on the (X, Y) plane measured

along the (X, Y) plane (0 < i < 3600)
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z

Figure 2-1. Euler angles.

I = angle between the (X, Y) plane and the WX, Y') plane

(0 < I < 1800)

w = angle between the intersection of the (X', Y') on the (X, Y)

plane and the XI axis measured along the (X', Y') plane

(0 < w < 3600)

The transformation

XAll A12  A1 3  X

yeA 21  A22  A2 3  Y

L IILA 31  A32  A3 3  Lz (24)
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is

Ali cos Q cos w - sin Q sin w cos I

A1 2  sin 0 cos w + cos 2 sin w cos I
A 13 = sin w sin I

A2 1  = -cos 0 sin w - sin 0 cos w cos I

A2 2  = -sin 0 sin w + cos i cos w cos I

A2 3  cos w sin I

A 31  = sin 0 sin I

A 32  = -cos Q sin I

A 33  cos 1 (25)

It results from a rotation about Z by an angle 2, about the new Y axis

by an angle I, and about the new-new Z axis (= Z') by an angle w. Thus,

the quaternion corresponding to the Euler angle transformation matrix

(25) is

q (cos , 0, 0, - sin

S(cos 1, 0, - sin ., 0).

.(cos !, 0, 0, - sin 2

= (cos 2 cos - COs - sin £ sin - sin 1,
2 2 2 2 2 20

0. I. W . 1cos sin - sin - - sin - sin- cos -,

P .II2 22 sin ,

-COS a cos - sin - - sin Cos Cos-) (26)2 2 2 2 2
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Consider a general direction cosine orthogonal matrix:

Al1  A12  A1 3 ]

AA 2 1  A22  A2 3

I A31  A32  A33 J (27)

The orthogonality condition is that the inverse is equal to the

transpose A-=AT

E A.i A jk 6..
k=1 jk 0ifj (28)

Equation (18) gives the A corresponding to a quaternion q. Given the

constraint Equations (7) and (14), checking that matrix (18) satisfies

condition (28) is straightforward.

Suppose a matrix (27) is given satisfying the conditions (28).

Presuming that matrix (27) can be expressed in the form (18), it follows

that

2q2- q4 
2) = Al1 + A2 2  (29a)

2q2- q2 
2) = A22 + A33  (29b)

2(q,2 - q3 
2) = A1 l + A33  (29c)

2(q2
2 - q3 

2) = All - A2 2  (29d)

2(22- q4 
2) = Al1 - A33  (29e)

2(q32  q4
2  = A22 - A33  (29f)

4q2q3  = A12 + A21  (29g)

4q2q4  = A1 3 + A31  (29h)

4q3q4  = A2 3 + A32  (29i)

4qlq 2  = A32 - A2 3  (29j)

4qlq 3  = A13 - A3 1  (29k)

4qlq 4  = 112 1 - A12  (291)
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q2A 1 3 + A31  A32 - A23  (29mn)
q3A 2 3 + A32  VA1 3 - _A3 1

q2 A12 + A21  =A 32 - A23  (29n)
q4A 23 + A3 2  A21 - A12

q3A 12 + A2 1  A 1 3 - -A31  (29o)

'j4-A 13 + A3 1  A 21 - A1'l2

By Equations (29d, m) and (29 e, n)

q22 (A13 + A3 1) (A11  A2 2 )

2A3+ A 3 1 - A2 3 -A 3 2T

- (A-_2 - A2 3) (All A22 )

2(A 3 2 _ A2 3 - A1 3 + A3 1 )

(A12 + A2 1) A2 2 - A33)
2A2+ A 2 1 - A2 3 - A3 2 )

(A2j-- A12) (A22 - A3 3 ) (0

2(A 2 1 - A1 2 - A3 2 + A2 3 )

By Equations (29d, m) and (29f, o)

2 = (A2 3  + A32) (Al1 - A22)
q3 2(AI3 + A3 1 - A2 3 - A3 2 )

- (A13  - A31) (A11  - A22)

2(A32 - A23 - A1 3 + A3 1 )

- (A1 2  + A21) A2 2  - A33)

2A2+ A 2 1 - A1 3 - A3 1 )

(A13  - A31) A22  - A33) (31)
2(A1 3 - A31 -A21 + A1 2 )
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By Equations (29e, n) and (29f, o)

2 = (A2 3 + A 32 )(Ali - A 3 3)q4  2(A12 + A 2 1 - A2 3 - A 32 )

=- (AZ1 - A12)(A11 - A3)
2(A-2 - A23 - A 2 1 + A 12 )

= (A13 + A 3 1)(A22 - A3 3)
2(A12 + A 2 1 - A 1 3 - A 31)

- (A2 1 - A 12 ) (A22 - A 33 )
2(A13 - A3 1 - A 2 1 + A1 2) (32)

The expressions in Equations (30), (31), and (32) with the largest

denominators should be chosen to evaluate q2 , q32, and q42 . The

component q12 can then be calculated from any of Equations (29a, b, c).

A choice of sign for ql determines the signs of q2, q3, and q4 by

Equations (29j, k, 1). There should be no inconsistencies in deriving

the q corresponding to an A if orthogonal conditions (28) hold and if no

reflections are involved.

If all the denominators in Equations (30), (31), and (32) were

zero, A would have to be a diagonal matrix with ±1 on the diagonal.

There can be none or two -1s, since otherwise a reflection is involved

and quaternions do not map into reflections, only rotations. The quaternions

corresponding to the allowed diagonal rotation matrices are given in

Equations (21), (22), and (23) with e. = 0-, 1800.1

For completeness, the Euler angles corresponding to a rotation

matrix A are given:
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sin I = V A3 1
2 + A3 2

2  ) 0 < I < 1800 (33)

cos I = AIIA 2 2 - A 12 A 2 1

sin w=A 3 1 /sin I
si 3/i 00 < w < 3600 (34)

cos W = A32/sin I -

sin 0 = A 2 1 cos w - A2 2 sin w
Cos =A0cos w - A1 2sin w 00 < Q < 3600 (35)

2.4 ANGULAR VELOCITY

-0 T
Let r = (rj, r2, r 3) be body fixed column vector with the

transformation to another coordinate system being defined by

s = Ar (36)

where A is a rotation matrix which is a function of time. Then

Tds _ TdA +
A -= A -tr

dt

0 wW w

= 3 0 -WI r

= X r (37)

because of the orthogonality condition Equation (28).

Consider the corresponding quaternion expressions with

r = (0, r1 , r2, r3):
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s = qrq* (38)

q*Lq = q* r+rWq(9

Constraint Equation (14) implies

- 9q* + qS 0(40)
dt = 0

dq dq q2% d2a*
...q* + 2  ~q L 0 (41)

dt2  d t dt2

Let

- --dq

W (0, wl w2 w3) =2q* HE(42)

The real part of w is zero by Equation (40). Then Equation (39) can

be written

q*sq = [r -rw] (43)

which is the Poisson bracket. Carring out the indicated operations

yields

2 rW = (0, w2r3 -w 3 r 2 , w3r, - wjr 3 ,

w2r3 - iY3 r2 ) (44)

which is the quaternion equivalent to W x r. Thus

WA1  W 1 , WA2  = wA2 , wA3 = w3 (45)

and the quaternion Poisson bracket corresponds to vector cross product.
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2.5 ANGULAR ACCELERATION

Differentiation of Equation (37) gives the matrix form for

angular acceleration in the body fixed frame

T d 2 -S -*w X
A d2= -tX r + w w r (46)

assuming that the vector r is fixed in the body. Differentiation

of Equation (43) gives the quaternion equivalent

ata 2  dt  Jt 4r ri

- wr rw w1 (47)
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SECTION 3

DYNAMICAL SYSTEM EQUATIONS

3.1 COORDINATE SYSTEMS

In Figure 3-1, a human or dummy subject is seated on a sled

which is constrained to move down a track for a lateral impact test.

Figure 3-2 is a similar representation of a fore-aft (eyes out) impact

test.

There is a 9-accelerometer array on the side of subject's head

in Figure 3-1, and a 3-accelerometer array inside the subject's mouth

in Figure 3-2. Let the coordinate system (X, Y, Z) be fixed in the

linear accelerometer array with origin at the center of the accelero-

meter array such that

X = positive forward out of the subject's head

Z = positive towards the top of the subject's head

Y = completes the right hand system (positive towards the

subject's left side)

Define a coordinate system (X, Y, Z) fixed in the sled seat by

X = forward out of the seat

Z - positive up

Y= completes the right hand system
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Figure 3-1. Lateral impact sled test coordinates.
Z

-Y IX

TRACK /

Figure 3-2. Fore-aft (eyes out) impact sled test coordinates.
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Initially, the X, Y, Z) axes are parallel to the (X, Y, Z) axes for

an upright subject. The origin of the sled coordinates could vary

between experiments.

Finally, the laboratory coordinate system (X, Y, E) fixed in

the track is

-Y = along the track in the direction of motion

= positive up

= completes the right hand system

For a lateral impact test, the (X, Y, Z) axes are parallel to the

(X, Y, Z) axes. For a fore-aft (eyes out) impact test, -Y is parallel

to -X and X is parallel to -Y. The origins of the X, Y, Z) and X, Y, Z)

coordinate systems are assumed to coincide at time to.

At time t, let

X X

= + yl(t) lateral impact test (48a)

X Y + yj(t)

-i fore-aft (eyes out) (48b)
Y -X impact test

z= F

where

Yl(to) = 0
(49)

Y(t) > 0, t >to

with to being the time of initiation of the experiment when the impact

is imparted to the sled in Figures 3-1 or 3-2.
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Let the transformation from accelerometer array coordinates

(X, Y, Z) to sled coordinates (X, Y, Z) be

(0, X, z) =) (0, zI(t), z2 (t), z3 (t))

+ q(t)(0, X, Y, Z)q(t)* (50)

where the quaternion q = (ql, q2, q3, q4) defines a rotation and

z = (0, z1 , z2, z3) defines a translation. The initial conditions

might be

z(to) = (0, z1 0, z2 0 , z30) (51)

q(t0 ) = (1, 0, 0, 0) (52)

for an upright initially stationary subject.

3.2 EQUATIONS OF STATE

The state variables which give the dynamical system representation

of the impact experiment are

Yi = position of the sled frame relative to the

track frame (cm)

Y2 = velocity of the sled frame relative to the

track frame (cm/s)

Y3  = acceleration of the sled frame relative to

the track frame (cm/s2)

z1, z2 , z3  = translational position of the center of the

accelerometer array frame relative to the

sled frame (cm)

z 4 , z5, z6  = translational velocity of the center of the

accelerometer array frame relative to the

sled frame (cm/s)

Z7, zs, z9 = translational acceleration of the center of

the accelerometer array frame relative to the

sled frame (cm/s2 )
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qj, q2, q3# q4 = quaternion rotational position of the

accelerometer array frame relative to

the sled frame (dimensionless)

q5t q6 t q~t q8  = quaternion rotational velocity of the

accelerometer array frame relative to

the sled frame (s-1)

qg, q1 0, q1 1 , q1 2  = quaternion rotational acceleration of

the accelerometer array frame relative

to the sled frame (s-2)

The dynamical equations satisfied by these 24 state variables are

dy2

=y - 3 O+w2

dt

dz.
-t =z+ + w 3+j, 1 , .. 6

dz. ,,

dt I = 0+ w 3 +jD ,8

dq.

dt = q j4+ Wl 2+j' 1, ... 18

dq.

=t 0 + wl+j j =9, .. 12 (53)

where w=(wi, -. 1 W24) is zero mean Gausian white noise in the

dynamics. The constraint Equations (7) and (14) imply
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4
E 2  = 1 (54)

i=1l

4
Eqq i+ = 0 (55)

i=1

4 4
Eqq = - Zq (56)i=l i i+8 i=l 1+4 5

The dynamics in Equation (53) are simplistic. Still, they

allow observations at different times to be tied together, and will

propagate an impact trajectory which best fits diverse observation

types (e.g., accelerometer and photographic) using Kahman fil*3r and

smoother state estimation formulas. The covariance of the integral of

the noise process (wl, ... , w24) in the Kalman gain matrix has to be

judiciously chosen to match the impact profile of the specific

experiment (see Section 7.4).

The dynamics of the z and q states defining the transformation

Equation (50) between the sled and accelerometer array frames is

constrained by the human body dynamics. A finite element model of

the human body with more states than used above could have more

realistic dynamic equations than the simplistic model employed in

Equations (53).

3.3 INTEGRATION OF THE STATE EQUATIONS

Let (yl(tk)r ... # ql2(tk)) be the estimates of the state

variables at time tk. For time to, these are just the initial condition of

the experiment, which could be Equations (49), (51), and (52) plus

zero velocities and accelerations for an initially stationary subject.

For time tk they represent the propagation of the state by the

dynamical equations with updates from the observations between times

t! and tk* It is presumed that the quaternion states

(q l (t k), •..' , q 12 ( tk))

satisfy the constraint Equations (54), (55), and (56).
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The state at time t k 1 given the state at time tk and, Assuming

zero mean noise is by Equations (53)

YI(t k+llIt k y YI(t ) + Y2 (tk) (tk+l - tk)

2 Y(tk)(tk~l - tk)

Y2(tk+ljtk) = Y2(tk) + Y3(tk) (tk+l - tk)

Y3(tk+lltk) = Y3(tk)

Z (tk i'tk) = zi (t k) + z j+3 (tk) (tk+l - tk)

j -1, 2, 3

z j+3 (t k+llIt k z j+3 (tk )+zj+6 (tk)(k+l tk),

j =-1, 2, 3

z j.(tk Itk) = zj+G (tk+l9

j 1, 2, 3

q i(t k 1 Itk) = q .(t k + q +(k)t~ - k

+ 1 q.8 (t )2

j4

q j4(t~llk)= qj+4 (tk) + q +8 (tk) (tk+l tk)

j 4

j =1..4 (57)

where bars are put over the q variables because they are intermediate

-o the final variables which satisfy the constraints Equations (54),

(55), and (56).
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3.4 QUATERNION CONSTRAINTS

The (ql, --- , q 12 ) satisfy the constraints except for higher

order terms in (t+I - )" In order to satisfy the constraints

exactly, let

q. (t k+1 tk)

q. (t+lltk) 4

( tk+ i k)

j = i,....4 (58)

qj+4(tk+llt k ) = q j+4(tk+lltk )

41
E qi (tk+l i k qi+4 (tk+l Itk)

- q (tkqlltk,

j = 1, ... 4 (59)

qj+B(t k+1litQ k -- +8 (tk+litk

-q. li tk)qi8(+ tk

+ Zq (tk+l 1 2

i=l
+• q + (t k+ll t k )

j = I,...,4 (60)

Taylor series formulas can be used to propagate the differential

equations solutions rather than more sophisticated integration techniques

because the spacing between observation times tk and tk+l is of the order

of a millisecond, besides the fact that the simplistic dynamical model

employed has exact Taylor series solutions.
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SECTION 4

STATE TRANSITION MATRIX

4.1 LINEAR MODEL

The state dynamical Equations (53) can be written in the form

xi X1  Wi

d
dt = A +(61)

X2 4j x2 jw24

where Yi

Y2

Y3
zi

X1

- (62)

Z9
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and where the 24 x 24 matrix A is

A3 x 3 0

A A9  9  (63)

0 A 12 x 12

The submatrices of the given dimensions are

A3  3 0 0 1 (64)

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

A 9 9 0 0 0 0 0 0 0 1 0 (65)

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
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0 00 01 00 00 00 0

0 00 00 10 00 00 0

A 12X1 0 00 00 00 00 0 10 (66)
12 0 12 0000

0 00 00 00 00 0010

The integration of Equation (61) between times t kand t klwith white

noise w set to zero yields

x (t+lltk) 0 (tk~ll tk) X(tk) (67)

where the state transition matrix 0 is

(P(t k+lD t k) exp [A(tk+l -tk)]

- 0 ( (t 1 (68)

i=0 ii k+1

By Equation (63) this can be written as

ep[3X3 tk+l tk)] 07

0( tkl ,t) exp[A (X9t k - tL0A3 ( exp(A 12Xl 2 :tk+l -tk)j

where the matrix exponentials would be evaluated by an appropriate

computer subroutine.
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Equatir.n (67) is the sawe solution -X'(t k+l It k) as the Taylor

series expansions Equations (57), since in the dynamics the jerk

(derivative of acceleration) is assumed to be zero. The state

transition matrix t is the partial derivative of the state at time

t klwith respect to the state at time tk

0 a(t k+l It k l( 0

X(tk)

Thus, functional relationships Equations (57) allow us to write

1 i1

'Y (t It) 1 kl- k 2 (71)
1~k)

1 (tk+l k2

ay(kll~)1i = 2 (72)

(tk+l tk) i = 3

0 i 1

ay3(tk+l Itk) =0 i = 2 (73)
ay (tk

1 i=3

z (t kl tk (tk+ 1 t.k) i j+3 (74)

i(tk+l -tk) j-1,2
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SZ +3(tk+llItk) -1i = j+3 (75)

(tk~ tk)i = j+6

j = 1,2,3

0 i j
3Z j+6(tk+lltk) 0 i = j+3 (76)

1 i = j+6

j =1,2,3

3i (tk+1 It k (tk+ tk i = j+4 (77)
3q (t k ~

2k+1 k

j = 1,2,3,4

0 i= j

aq (t Ilt) _

j+4 k+l 1 i = j+4 (78)
aq (t
i k

(t k+l tk) i = j+8

j = 1,2,3,4

o i = j

+ 8 (t+1'IJCk 0 i = j+4 (79)

1 i =j+8

with partial derivatives not included in Equation (71) through (79) being zero.
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If more complicated linear dynamics are added to Equations (61)

than those given by Equations (63) through (66), then the matrix exponen-

tial can be used. For now, closed form Equations (71) through (79) can

be employed.

4.2 QUATERNION CONSTRAINTS

Normalizing the results as at the end of Section 3 makes the

state transition nonlinear, which requires the use of extended Kalman

filtering and smoothing. This requirement also arises from nonlinear

formulas for the observables in terms of the states.

For the final normalized variables

aq (t k+lIt k ) n aq. (tk+ljt) aq i(tk+IItk)
3q (t, - E - 1

j~ 3ql k (- k~~k j i k)~

j, 1 = 1, ... 12 (80)

Let 6.. be the Kronecher delta

0 i j
6 iJ =(81)

and let

11/2

P = E q (82)

Then constraint Equations (58), (59), and (60) imply for j 1, ... , 4

__- 6. i i = 1, 4 (83)q .
1 [ I j - i 2 j

3q.PP

3qJ 0, i = 5, ... 12 (84)

3q.

50



qj +4q

- q q
3q i =1 3 iZ+ I

[ q 0 i 49. .. (85)

j _ q i4 q8 i qj, (86)

-q j+ = 0 i = 9, 12 (87)
q 

i

[4 214 aqj
E- + E q

1=1, ,4 (88)

aq. [+ aq.Z+

i 5, .,8

~j+8 = -,F~ 1 9, .. ,12 (90)

3q.
1

-ihe only problem is that the map from unnormalized to normalized

quaternion variables is not one-to-one, which is what is desirable for

calculating the state transition Jacobian partial derivative matrix.
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For example, let

q = q = (1, 0, 0, 0)

Then

3qi/3qi = 0 (i, j = 1, .. 4)

which cannot be allowed in Equation (80). Since the normalization

correction will be very small and the Jacobian partial derivative

matrix is only used in propagating the covariance matrix, it will

be assumed that

-q - 12 X 12 identity matrix (91)

3q
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SECTION 5

OBSERVABLES

The theoretical formulas for accelerometer array, ideal angular

accelerometer, photographic, track sensor, and quaternion constraint

observables are derived in terms of the states

Yl, Y2, Y3, zl, --- , zg, ql, 2 ,

5.1 LINEAR ACCELEROMETER ARRAY

Let

b il, b i2' b = position coordinates of linear piezoresistive

accelerometer i relative to the center of the

accelerometer array in the accelerometer array

frame (X, Y, Z)

bil, bi2, bi3 = position coordinates of accelerometer i relative

to the laboratory frame (X, Y, Z) fixed in the

track

c il, ci2, ci3 = direction cosines of the input axis direction

of accelerometer i relative to the accelerometer

array frame (X, Y, Z)

cill c12' ci3 = these direction cosines in the laboratory frame

(;, Y, i) fixed in the track

In quaternion notation

b. (0, bil, bi2, b3)
- = -(92)

b =(0, ;il ;, ;1
" co, 12' J

i ii i2
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By Equations (48) and (50) the quaternion transformation between the

accelerometer array and laboratory frames is

b.i = p1(0, zl(t), Z2(t, z3(t)) + q(t)b iq(t)*]p*

+ (0, 0, - y1 (t), 0) (93)

where by Equation (23) with e3 =0*, 900

p = (1, 0, 0, 0) lateral impact test (94a)

p= (r2 0, 0, _ 2L ore-aft (eyes out) (94b)
F 2/ impact test

The acceleration of accelerom~eter i relative to the laboratory

frame in the laboratory frame is

d2 b.

dt P {(0, z 7 (t), z 8 (t), z 9 t)

+ d Iq(t)b iq (t) * I} p* + (0, 0, -Y 3 (tW 0) (95)
dt 2 1

where

12 d2q(t) bqt

dt 2  dt 2  1

+2 d!~t b dq(t)*
dt i dt

+ q(t)b. d2q(t)* (96)
1 dt 2

with

dt t ' dt' dt.' d

M (q5(t), q6 (t), q7(t), q8(t))

d2q(t . (qg(t), q1 0 (t), q1 1(t), q12Mt) (98)
dt

2
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pr1 -

The acceleration sensed by linear accelerometer i is the vector

dot product of its input axis direction and the specific acceleration

with both being referred to the same reference frame, and where specific

acceleration is total acceleration minus the acceleration due to gravity.

Either the laboratory frame or the accelerometer array frame could be

used. The latter is preferable, since formulas are simplified for cross

axis error models and angular accelerometers.

A stationary object in the laboratory frame (X, Y, Z) has a

specific acceleration of

g = 980.3 cm/s2  (99)

along the Z axis in the vertical up direction, where g is the combination

of the accleration due to gravity and the centrifugal acceleration due

to the earth's rotation. Thus, the theoretical value of the specific

acceleration of accelerometer i referred to the accelerometer array

frame is by Equations (95) and (96)

ni = (0, nil, ni2' ni3 )

A db.g]
= q'p* I dt2 .+ (0, 0, 0, g P9

= q*[(0, Z7 , Z8, z9 ) + p*(0, 0, -Y3, g)p]q

* [ (q *~qb + b.i(~q*q
dt2) dt2 /

* 2 (q dt) bi (t q)] (100)

where it was chosen to keep the result in terms of the quaternion state

variables instead of the angular velocity. The theoretical value ai of

accelerometer i output is then

3
a " a E nijcij+ Ii (101)

j-l
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where A is a scale factor to change the internal units of the Kalman
a

Filter-Smoother computer program (cm/s2) to the accelerometer observable

units and where ii. is a measurement bias.
I

A piezoresistive accelerometer's output is actually a voltage

which is input to an analog-to-digital converter. It is presumed that

a scale factor calibration has been performed, and that the observed

value of observable a. has been converted to g. Then the parameter1

A in Equation (101) isa

A = 1/980.3 (102)a

For an initially at rest experiment, the bias p i is

= Pi0 -ci 3 g (103)Pi PO-c

where pi0 is the average value of the stationary accelerometer output

and where

(0, C ill) = pq(t0 )(0, cil, ci, ci3 )q(to)*p* (104)

5.2 IDEAL ANGULAR ACCELEROMETER

By Equation (93), the rotation quaternion from the (X, Y, Z)

reference frame in which an angular accelerometer is fixed to the

(R, Y, 2) laboratory reference frame is pq(t). By Equation (42) the

angular velocity quaternion w with components in the (X, Y, Z)

reference frame is

w = (0, Wi, w2 , W3 )

W 2q(t)* ) (105)
dt-

Thus, the angular velocity quaternion in the (R, 7, ) laboratory

reference frame is

W - (0, wi, W2, w3)

I q (t)
U 2p--q(t)*p* (106)
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The inertial angular acceleration quaternion in the (X, Y, Z) reference

frame is then

6 - (0, tit t2, E3)

- q(t)*p* d t

2 [q(t) *d2q(t) + q(t) *dq(t) dq(t)* 1
dt 2  + -- - q (t) (107)

Ldt2
If c= (0, ci ll ci2' ci3) is an input axis direction cosine

quaternion relative to the (X, Y, Z) frame of an ideal angular accelero-

meter, then the theoretical value of the output of the instrument is

3
ai E tjci j radians/s 2  (108)

Scale factor and bias are ignored because an ideal instrument is assumed.

A three-axis angular accelerometer would make three measurements relative

to three mutually orthogonal input axes cl, c2 , c3 and give complete

visibility into the angular acceleration.

5.3 PHOTOGRAPHIC

Triangulation analysis of the film from movie cameras attached

to the sled yield coordinates of fiducials relative to the sled frame

versus time. The fiducials are attached to the subject at various

points, e.g., on the bridge of the nose or beside an eye.

The sled frame coordinates that are given for each fiducial versus

time are (-X, Y, Z). Note that the photographic data employs a left

hand coordinate system, which has to be accounted for when processing

observations with the Kalman Filter-Smoother software, which uses the

right hand coordinate systems of Figures 3-1 and 3-2 for internal

computations.
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Let

z = (0, Z01, Z02, z03) = initial sled frame coordinates

of the center of the accelero-

meter array (cm)

f01 = (0, fil, fOi2, f0i3) = initial sled frame coordinates

of fiducial i (cm)

The above quantities have to be derived from experimental measurements,

which are given in the left hand coordinate system and measured in inches.

Let

e. = (0, ell, ei2, e.3) = fixed position coordinates of

fiducial i relative to the

accelerometer array frame (cm)

It is assumed that the fidUcials and the accelerometer array are rigidly

tied together, which is not strictly true, because

(1) An accelerometer array strapped to the head can move

relative to the head during the experiment, although

this is less of a problem for an array rigidly attached

to the teeth;

(2) The fiducials are attached to the skin, which can

deform during the experiment, except that certain areas,

such as the bridge of the nose, deform less than others.

If the sled and accelerometer array frames are parallel at the initial

time, then

eij = f ij- z0j' J = 1, 2, 3 (109)

If

q0 = (qO1, q02, q03, q04)

represents an initial quaternion rotation from the accelerometer array

frame to the sled frame at the initial time, then

e i  q0* (f0i - z0)q0  (110)

58

- , .



Given the state

x = (y Iz ,q)

at time t, the sled frame coordinates of fiducial i at that time are by

Equation (50)

f. (01 f. il f i , f. )i3 (0f z a z 21 z

+ qeiq*(1)

where

q = (q1 I q 4) and e. = (0, ei1, e12 , e.i

Let

Bill 012 F 8.3 =theoretical values of fiducial i photographic

observables

Then

ii= -x bf (112)

0i2 Af i (113)

a i3 xbf i3(114)

where X b gives the conversion from centimeters to inches:

x b 1/2.54 -0.3937 (115)

5.4 TRACK SENSORS

An accelerometer mounted on the sled measures the acceleration

yi of the sled relative to the track in g. The theoretical value of

this observable is

Y1 ay 3(116)
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A tachometer attached to a wheel running along the track measures

the velocity Y2 of the sled relative to the track in ft/s. The theoretical

value of this observable is

Y = Acy 2  (117)

where A is the conversion from cm/s to ft/s:c

A = 1/(2.54 x 12) = 1/30.48C

= 0.0328084 (118)

5.5 QUATERNION CONSTRAINTS

The quaternion constraints are introduced as errorless artificial

observations 61, 62, 63 in order to have the Kalman filter update yield

quaternion states which satisfy the constraints. By Equations (54),

(55), and (56)

E q (119)
61 =  1 - i=1

4
62 = E qiq1 (120)

i=l 1+

4 4
63 = £ q.q. - E q2  (121)i=l i=l

The observed values of these observables are zero with zero error.
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SECTION 6

PARTIAL DERIVATIVES OF OBSERVABLES

The partial derivatives of the observables with respect to the

states are required to calculate the Kalman filter gain matrix.

6.1 LINEAR ACCELEROMETER ARRAY

Let (xj, ... , x24) be given by Equation (62). Differentiation

of Equation (101) yields

ax. 3 an..
Ix~= )a E axll (122)

where the quaternion partial derivatives are

an i = (o, "' axi 'n (123)
ax ax , if-

By Equation (100)

S= 0, 1. = 1, 2 (124)ayp.

aI - q*p*(0, 0, -1, 0)pq (125)

aY3

-z I 0,9 1 , . 6 (126)

a -q*(0, 1, 0, 0)q(17
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az8  -q*(0, 0, 1, 0)q (128)

-z9  q*(O, 0, 0, 1)q (129)

hi - aq (O, Z7, z8 , z9 ) + p*(O, 0, -Y3, q)p]q

+ q*[(O, Z7, z8 , zS) + p*(O, 0, -Y3, q)p] Dq

+ I( i b. + b.
[\at d 2) dt2 Dq k

+ 2 ( ) ! ) (eNq)

+ 2 (q*L.) b i(d* Ds)

2 = i,....4 (130)

a1  2 * a--- I qd

+ (q *2)b.( LI (d q]
= 5, ... ,8 (131)

__ [i a / * \ b~ + b, q

I = 9, ... , 12 (132)

where, for example, aq/q£ is a quaternion with zero entries except

for a 1 at position L.
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6.2 IDEAL ANGULAR ACCELEROMETER

Differentiation of Equation (108) yields

3 O. 3 aE.
E : (133)

ax j=1 ax2 9 j

where the quaternion partial derivatives are

E- 0,11 .ax9  )x ax iax /(134)

By Equation (107)

=0, 9~=1, 2, 3 (135)
ay i

ac 1= 0,x i (136)
z91

aq Iaq idt

+ jqj q + qq~ q2
3q 91dtdt dt dt aqt. ~

X. =1..4 (137)

2 q*--2 (,) dq *

dqa I/dq*\q

9= 5,...8 (138)

__ 2q I d 2 q
aq i .x dt 2

t. 9, .. ,12 (139)
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6.3 PHOTOGRAPHIC

Differentiation of Equations (112), (113), and (114) yields

3 ii af1

ax z = b axx(140)

1 3 _ f1 
12

ax_ z Xb ax (142

where the quaternion partial derivatives are

a 1fii a i2 I a 31  (143)
ax2  3X2, Dx2' axx

By Equation (111)

13 - 0, Z9- 1, 2, 3 (144)

9f.
-fi (0, 1, 0, 0) (145)

af.
= (0, 0,1, 0) (146)

aZ2

(0, 0, 0,1) (147)

af.i
1z k o, 01 4, .. ,9 

(148)

aq aqj + qe Bq

9.* 1,. , 4 (149)

93f,.. 12 (150)
3q9
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6.4 TRACK SENSORS

By Equations (116) and (117)

Dy X b
3

ay2 xC (152)
2

with all other partial derivatives being zero.

6.5 QUATERNION CONSTRAINTS

Differentiation of Equations (119), (120), and (121) yields

-6 0, i = 1, 2, 3; R, = 1, 2, 3 (153)

61 01~ i = 1, 2, 3; 9.= ,.. 9 (154)
3
z x

361

DqZ 2z. = 1, *.,4 (155)

361
-0, k. = 5, .. ,12 (156)

362

=q 2.  .= 1 . 4 (157)

362

aq Z = , 2. = 5, .. ,8 (158)

3q - 0, L. 9, .. ,12 (159)
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363

aq = +8' = 1, ... , 4 (160)

= -2q£, x = 5, ... , 8 (161)
3q 1

96 3

q = qZ+8' = 9, ... , 12 (162)

6.6 CHECK OF PARTIAL DERIVATIVES

The coding of the observable partial derivatives can be checked

by the difference method. Namely, given a state vector

x = (X2, ... ,X2),

the theoretical value of observable s. (x) is computed and also as /ax.
The state vector is changed by the increment

A. = (0, ... 1 0, A., 0, ... , 0) (163)
3 3

x + Aj = (x , .... x. , x + A., x j+, .... x24) (164)

Then it is checked that

Ias i(x + A.) si(x)I-. 
+ 

- I
ax ax J-s (x + 3x a x

. 1 (165)

The coding of the partial derivatives of normalized quaternion

components with respect to unnormalized quaternion components and the

partial derivatives of the state components at time tk+ 1 with respect

to those at time tk can also be checked by this method.
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SECTION 7

KALMAN FILTER AND SMOOTHER

Let the state vector

+ T
x =(x 1, ... X24) (166)

be defined by Equation (62), where the superscript T denotes transpose

changing the row vector in a column vector. Let the state transition

from time tkto tk be

X(t k+l Itk) r=x(t W( tk~ tk

k 1 ,3,., N (167)

where W is the integral of the zero mean Gaussian white noise process
4P
w, so that

E(W) 0 (168)

where E denotes expectation (see Section 7.4). Let

Q~tk+l' tk) = covariance matrix of W(t k+l , tk) so that

Q. E(W.W.) it j =1, .. ,24 (169)

Let the observable vector be

s(t k) (Cii, ' La' Olt i F Ba, Y1 2' 61, 62, 63)T

(170)
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where its length can vary at different observable times. The observables

in terms of the states are

s(tk+1) H(x(t+ 1 )) + rk+1 (171)

where rk+1 is zero mean Gaussian noise with covariance matrix Rk +

uncorrelated from one observing time to the next. It can be taken as

a diagonal matrix with elements that represent the squares of standard

deviations of the observable measurements. These standard deviations

are zero for the quaternion constraint observables 61, 62, 63.

Formulas are now given for forward and backward extended Kalman

filters and for the Kalman smoother which is the optimal combination

[2]of the two filters

7.1 FORWARD FILTER

At the initial time to, the state initial condition for the

forward filter xf(to) is specified by, e.g., Equations (49), (51),

and (52) with velocities and accelerations zero for an experiment with

the sled initially at rest. The covariance Pf(to) of the initial state

also has to be specified. It can be taken to be a diagonal matrix with

elements that represent the squares of the standard deviations of the

uncertainty of the initial conditions.

The expected value of the state xf(tk+lltk) at time tk+1 given

the state xf(tk) at time tk is calculated from Equation (167) with

W = 0 in the form of Equations (57) through (60). The state transition

Jacobian matrix

axf(tk+lItk) ax fi(th+lltk (172)ax+ f:t)  ax xfj(tk) ]

is calculated from Equations (71) through (80) and (91). For the first

12 linear state variables it is the matrix exponential state transition

matrix. For the last 12 state variables the matrix exponential ismodified

by the partial derivatives of the nonlinear quaternion constraints, which,

however, are assumed to form the identity matrix.
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The state covariance matrix Pf (tk+lItk) at time tk+i given the

covariance Pf(tk) at time tk and the covariance Q(t , tk) of the

dynamical noise is [2]

Pf(tk+lltk) = Jk+Pf(tk) J + Q(tk+' t) (173)

where JT is the transpose of J.

The theoretical values of the observables H are calculated from

Equations (100) through (121). The observables Jacobian matrix

L 3~~H(x f ( tk+lltk))(1 4Lk+ = (174)
ax f(t k+j1k)

is calculated from Equations (122) through (162).

The Kalman filter gain matrix is

Kk+1 = f(tk+lltk kL +l +1f( 1I k+1

+ 'k+1] (175)

Note that this form of the gain matrix allows zero rows and columns in

R, as is the case when the perfect quaternion constraint observables

are included. However, the total matrix in the brackets 1] has to be

invertable.

It is possible that for multiple observations at a given time

some combinations of the observables would be essentially equivalent,

which might cause noninvertability of the LPfLT portion of the matrix

in the brackets [1. However, the nonzero portion of the observation

error matrix R will likely make the sum in brackets [I invertable. If

not, observations at a given time can be passed through the Kalman

filter sequentially along with the 3 quaternion constraint observables.

In this manner, complete processing of n observations at a given time

would involve n inversions of 4x4 matrices, instead of one inversion of

an (n+3)x(n+3) matrix.
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If the data acquisition system makes the A/D conversion measure-

ments at distinct times, rather than using a sample and hold to obtain

everything at the same time, then this sequential processing would have

to be done anyway.

The expected value of the state x f(t k+) at time tk+ 1 given the

state at time tk and the observables at time t k+ 1 isk 1

Sf(tk+1)= Xf(tk+1Itk) +k+

- H(xf (tk+ltk))] (176)

The covariance Pf ( + 1) of the state at time t+1 given the state at

time tk and the observables at time tk+1 is
[2 ]

Pf(tk+1) = [I - +iL k+l]Pf(t kj1tk

where I is the identity matrix.

The above formulas define the extended Kalman forward filter

with the nominal trajectory for the extended filter linearization being

updated each observation point. Extended rather than linear Kalman

filtering is required because of the nonlinearities in the quaternion

constraints and in the formulas for the observables in terms of the

states.

The quaternion constraint information appears implicitly in the

Kalman update Equation (176), because the constraints are taken to be

perfect observations. However, the linearization employed in extended

Kalman filtering could yield an update (xl( tk+ 1), ... x24(tk+i)) for

which constraints are not satisfied bythe quaternion part (x13(tk+l ),

.,x24(+)). Therefore, the normalization Equations (58), (59),
_.and (60) should be applied. Let x, P be the state and its covariance

matrix before the quaternion normalization and let x, P these quantities

after the quaternion normalization at time tkI"* Then
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= IaxI axl
-EPa- (178)

\axj \ 3xf

where

I I12x12 0 12x12
ax
-- = 1(179)

0 12x12 3q

with the 12x12 matrix (aq/aq) being given by the Equation (91) identity

matrix, for the reasons given at the end of Section 4.2.

7.2 BACKWARD FILTER

At the last time point t in the data, letn

xb(tn ) = xf(tn ) (180)

The covariance of this initial value for the backward Kalman filter is

-1
Pb(t) = , Pb (t) = 0 (181)

since the Kalman smoother state is the optimal combination of the forward
1I -1

and backward Kalman filter states weighted by Pf and Pb' and the Kalman

smoother state has to equal the forward Kalman filter state at time tn,

where both contain all the observable information from time to to time

t.
n

4.
The expected value of the state xb(tklltk) at time tk i given the

state xb(tk) at time tk is calculated from Equations (57) through (60)

with tk+ replaced by tk_- so that (tk-l - tk) is negative. The state

Jacobian matrix

3k-1 - - (182)
a(tk)

is calculated from Equations (71) through (80) and (91).
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The state covariance matrix Pb(tt_1Itk) at time tk- given the

covariance Pb(tk) at time tk and the covariance Q( tk-i' tk) of the

dynamical noise (same in the backward and forward directions) i[2]

Pb(tkltk) - Jk-lPk(tb)J_ + t(183)

For k = N, Pb(tN) = , which implies that Pb( itk) C.

The theoretical values of the observables H is calculated from

Equations (100) through (121). The observable Jacobian matrix

L k-1  = I ti. (184)axbCtk_ ltk)

is calculated from Equations (122) through (162).

The Kalman filter gain matrix is
[2]

K Itk) L [Lk- Pb (tkIltk) L T

+ sk- 1  (185)

The expected value of the state x (tk) at time tk_ given the state

b k-i [2] _ ie h tt

at time tk and the observables at time tk-i is

xb(tk_1 )  = Xb(tkIltk) + Kk-l[s(tk_1 )

- H(xb(tklItk))] (186)

The covariance Pb(tkl) of the state at time tk_1 given the state at

time tk and the observables at time tk_1 is
[2 ]

Pb(tki) , [I - KILkl]Pb(tklltk) (187)
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These forms of the Kalman filter equations are ideal with the perfect

quaternion constraint observables for all except the first step in the

backward filter process.

To go from time tN to tN- 1 with P b(tN) = , the following

alternative form of the Kalman filter formulas can be used121:

St +L T  -1 (188)
Pb(tki -i = Pb(tkjltk)-1 k- -(8Lk-

Tt T-1

k-1tk _1 ik-1 (189)

where Pb (tNi t) = 0. However, the matrix LT R -_L can be
b N NN-i N-i N-i

singular because certain states might not be directly observable

from the given measurements at time tN_ 1* Thus, Pb (tNIItN)-1

can be taken as a diagonal matrix with very small diagonal entries.

The covariance for the quaternion constraint observables should also

be small but nonzero so that exists.

It turns out that for the impact experiments investigated in
this report, the backward filter step from time tN to tN- 1 could not

meaningfully be made, neither with small nonzero entries in Pb (t N-1 tN)

and 1-i Equations (188) and (189), nor with large but less than

infinite entries in P b(t N) in Equations (185) and (187). The forward

filter worked well because it started from known initial conditions at

time to. In retrospect it is clear that the backward filter cannot

be employed starting with complete uncertainty at time tN unless the

measurements at time tN- 1 give complete observability into the states.

In this situation it is better to smooth the observables before passing

them through the Kalman forward filter rather than using an optimal

combination of the forward and backward Kalman filters to smooth the

states.

If the backward filter were employed, the quaternion normalization

described at the end of Section 7.1 should be applied to x.(tk-_) and

then the smoother formulas of Section 7.3 utilized.
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7.3 SMOOTHER

If both the forward and backward Kalman filters are run, the

Kalman smoother state estimate is the following optimal combination

of the two filter estimates 12

-1 -1 -1(10P = Pf- + Pb- (190)
f b

x = PP fxf +P 'xb (191)

where the equations are evaluated for any time t (to < t < t N) with

nonsubscripted quantities being the smoother results.

Because the quaternion constraints are nonlinear, x no longer

satisfies those constraints exactly even though x and xb do. Therefore,

the normalization of x and the updating of P must be performed as

described at the end of Section 7.1.

7.4 PLANT NOISE

Successful application of the algorithms described above requires

a choise of Q which allows for the unknown but bounded variability in

jerk (= change in acceleration), yet optimally combines the information

contained in the observables at a given time with the information

ftntained in past states (and also future states if a smoother could

be employed).

Suppose in a given impact experiment the observations are

uniformly one millisecond apart. Suppose the acceleration level of

the order of lOg could change by up to 0.5g in a millisecond. Then

the standard deviations of the variability in the state in one millisecond

are

acceleration: 500 cm/s2

velocity: 0.5 cm/s

position: 0.5 x 10- 3 cm
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The squares of these values can be taken as the covariances in the

diagonal Q( t, It+ 1) matrix, except that the small uncertainty in the

position covariance could be increased somewhat to account for other

sources of uncertainty besides integrated acceleration uncertainty.

However, the propogated state uncertainty will likely give appropriate

magnitudes for the uncertainties in position and velocity for closely

spaced observations.

For the quaternion rotation uncertainties, appropriate standard

deviations for changes in one millisecond could be

angular acceleration: 10 rad/s2

angular velocity: 10- 2 rad/s

angular position: 10- 5 rad

for the impact experiments of concern in this report.

7.5 MATRIX MANIPULATION

Symmetric covariance matrices should be calculated and stored

in the computer in lower diagonal form. That is, a symmetrix matrix

S is stored in a vector array as

I S(J + (K(K-l))/2), J S K
S(J, K) = (192)

S(K + (J(J-l)/2), K _< J

The usual Fortran storage assignment for a general NXN matrix M is

M(J, K) = M(J + (K-l)N) (193)

Subroutines are required to multiply a symmetric matrix by a nonsymmetric

matrix (MS or SM) to get a nonsymmetric results, to compute MSMT to get

a symmetric result, and to multiply general matrices.

The computer subroutine to calculate the inverse of a symmetric

matrix stored in lower diagonal form by the Gauss-Jordan direct method

should choose all the pivot elements on the diagonal, so no interchange

of rows or columns is necessary.
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There can be numerical problems with matrix entries being

badly out of scale relative to one another, especially with matrix

inversion. Clever choice of units could help mitigate the problem.

However, it is easier to choose convenient units (cm, s, g, etc.)

and then use automatic scaling before performing a matrix inversion.

Namely, let S = (S ) be a symmetric matrix. Define a diagonal matrix
jk

D = (Djk) with diagonal entries

D.. = l/S. (194)

where the diagonal elements of S are no doubt positive because it is

probably a covariance or related matrix. Define a new symmetric matrix

U = DSD (195)

The diagonal elements of U are 1, and those off the diagonal are likely

not way out of scale, so that it is numerically easier to invert. Then

the inverse of S is

-1 DU-1D (196)
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SECTION 8

DATA ANALYSIS

Two lateral and two fore-aft (eyes out) impact sled tests were

analyzed with the software written using the formulas presented in this

report. One experiment of a given type involved a dummy subject and

the other a living human subject. A nine-accelerometer array (9-TAP)

using Endevco 2264-200 piezoresistive accelerometers was strapped to

the right side of the subject's head for the lateral impact tests, and

a similar three-accelerometer array was used for the fore-aft impact

tests. The piezoresistive accelerometer voltage outputs were converted

to g units using precalibrated scale factors. Biases were determined

from the first few data points in each experiment when the subject was

stationary before the impact event.

Head fiducials were tracked by motion picture cameras. Triangu-

lation gave the sled fiducials as a function of time in inches. The

acceleration and velocity of the sled relative to the track were measured

in g and ft/s, respectively.

As the sled accelerated down the track away from its rest position

under the impetus provided by a piston, the subject's constrained

yielding torso was dragged along, as was the subject's head attached

to the torso by the neck. The problem is to derive the motion of the

head (translational and angular position, velocity, and acceration)

by processing all the data simultaneously through the Kalman filter.
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The nominal error standard deviations assumed for the experimental

measurements are listed in Table 8-1. The observation covariance matrix

R is diagonal with diagonal elements the squares of the standard

deviations. Each observable has its own units. The theoretical

values of the observables in the units internal to the software (cm

and s) are converted to the observable units by multiplying by the

appropriate factors.

Table 8-1. Measurement standard deviations.

OBSERVABLE TYPE STANDARD DEVIATION

Linear Piezoresistive
Accelerometer

Photographic 0.1 inch

Track Velocity 0.1 ft/s

Track Acceleration 0.1 g

The interval between accelerometer measurements is one millisecond,

whereas photographic measurements are two milliseconds apart. An impact

event lasts about 0.3 seconds. The Kalman filter allows different numbers

of observables at each one millisecond time point, with the state being

propagated between time points by the dynamical equations. The dynamical

noise Q chosen in Section 7.4 for these experiments allows the proper

weighting of present observable information relative to the past

observable and initial condition information contained in the propagated

state variables.

8.1 LATERAL IMPACT TESTS

A diagram of the 9-TAP is given in Figure 8-1. The right-hand

coordinate convention of the software is employed rather than the left-

hand convention of the experiment.
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There are three accelerometers near the origin 0 of the 9-TAP

with input axes along the three coordinate axes as shown. At a distance

d = 1.5 inches = 3.81 cm along each of the three coordinate axes

are two accelerometers with input axes perpendicular to the given axis.

The seismic mass coordinates and input axis directions of the

accelerometers relative to the accelerometer array frame are given in

Table 8-2. They are offset a distance d' = 0.34 inch = 0.6 cm

from the center lines of the array arms.

Table 8-2. Nine accelerometer array coordinates.

d = length of array arms

= 1.5 inches = 3.81 cm

d' = offset of seismic masses from center line of arms

= 0.34 inch = 0.86 cm

ACCELEROMETER POSITION IN ARRAY INPUT AXIS DIRECTION INITIAL OUTPUT
COSINES WITHOUT BIAS

Number Name bj b2  b 3  c1  c 2  c 3

1 X0  d' 0 0 1 0 0 0

2 Y0 0 d' 0 0 1 0 0

3 Z0  0 0 -do 0 0 -1 -l g

4 X1  d' -do 0 1 0 0 0

5 Z! 0 -d -d' 0 0 -1 -i g

6 Y2 -d d' 0 0 1 0 0

7 Z2  -d 0 -do 0 0 -1 -i g

8 X3  d' 0 d 1 0 0 0

9 Y3  0 d' d 0 1 0 0

At the initial time to = 0, the sled is at rest with zero velocities

and accelerations. The track, sled, and accelerometer array coordinate

axes are all initially parallel with zero relative velocity and accelera-

tion. The origin of the sled frame coordinates and the position of the
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accelermeter array frame relative to it vary with each experiment.

The origins of the sled and track frames are assumed to coincide at

the initial time.

8.1.1 Dummy Test 1363

Lateral impact dummy sled test 1363 is depicted in Figure 8-2.

The sled frame has origin in the seat, and the initial position of the

center of the nine-accelerometer array and the photographic fiducials

relative to the sled frame are given in Table 8-3.

Figure 8-2. Lateral impact dummy sled test 1363.
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Table 8-3. Dummy lateral impact test 1363 initial accelerometer array
and photographic fiducial coordinates relative to the sled
frame*.

INCHES CENTIMETERS

9-TAP
9-TAP 8.50 -2.15 34.80 21.59 -5.46 88.39(zI0, z20, z30)

Right Eye Fiducial 9.00 -0.65 32.55 22.86 -1.65 82.65

(U0111 f0 12, f0 1 3)
Nose FiducialNoe F0421 10.05 1.60 32.15 25.53 4.06 81.66(f041, f042, f043)

Typical accelerometer and photographic observables and Kalman

filter post-fit residuals are given in Figures 8-3 and 8-4. The

residuals result from the Kalman filter trying to best fit the data

from the nine-accelerometer array, the sled accelerometer and velocity

tachometer, and the three coordinates of each of the two photographic

fiducials.

The Kalman filter is threading the states through the observables,

but the residuals are not as small as might be desired. For accelerometer

readings of over 10 g, the residuals were between -2.5 and +1.8 g. The

photographic fiducial residuals were between -1.0 and +1.2 inches. The

sled acceleration and velocity relative to the track had 0.2 g and

0.5 ft/s maximum magnitude residuals.

The dummy had a three-accelerometer array at the center of its

head. The residuals were as large as 22 g in magnitude. The most

probable cause of these discrepencies is some error in the input

coordinates to the software.

Right-handed coordinate frame, so that X is the negative of the value
in the left-hand photographic measurement frame.
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8.1.2 Human Test 1313

Lateral impact human sled test 1313 is similar to the dummy test

discussed in Section 8.1.1. The initial position of the center of the

nine-accelerometer array and the photographic fiducials relative to the

sled frame are given in Table 8-4. The Kalman filter was again obviously

tracking the observables, but one of the accelerometer residuals got

as large as -3.3 g and another was as large as +2.8 g for accelerometer

measurements of the order of 10 g.

Table 8-4. Human lateral impact test 1313 initial accelerometer array
and photographic fiducial coordinates relative to the sled
frame*.

INCHES CENTIMETERS

9-TAP
(z10, 6.42 -1.94 32.24 16.31 -4.93 81.89(z10, Z201 Z30)

Right Eye Fiducial 7.54 -0.31 31.92 19.15 -0.79 81.08
f0 1 1, f0 12 , f0 1 3)

Nose Fiducial

(f04 1, f 8.80 2.08 32.75 22.35 5.28 83.19

8.2 FORE-AFT (EYES OUT) IMPACT TESTS

Data from fore-aft (eyes out) impact sled tests 1133 (human) and

1229 (dummy) were analyzed. There was a nine-accelerometer array

strapped to the subject's forehead. In order to simulate the situation

of a three-accelerometer array afixed to the teeth inside the mouth,

only three of the nine outputs were obtained for use in the analysis.

Right-handed coordinate frames, so that X is the negative of the value
in the left-hand photographic measurement frame.
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There was photographic fiducial data from two head fiducials

in each experiment. Only the X and Z coordinates versus time were

recorded, since the motion of the subject was mainly in the (X, Z)

impact plane. Therefore, in the Kalman filter analysis the Y accelero-

meter output was ignored, and only the X and Z accelerometer data

used along with the X and Z photographic fiducial data.

In both experiments, the Kalman filter tracked the observables

until the start of the impact event, at which point the Kalman filter

diverged from the observables, with some residuals being greater than

103 g. The cause of this divergence requires further investigation.

8.3 ANGULAR ACCELEROMETER COVARIANCE ANALYSIS

The Kalman filter software has the option of reading a trajectory

output tape from a previous Kalman filter fit, adding dummy observations,

and calculating the state covariance of the input trajectory for the

expanded observation set. The Kalman filter propagation of the

trajectory is skipped and the input trajectory states are unchanged

with only the state covariance being updated.

The output magnetic tape from lateral impact experiment 1363 was

read and a covariance analysis performed with the addition of ideal

angular accelerometer observables in three orthogonal directions. The

angular accelerometer measurement error was assumed to be 0.01 rad/s 2 .

The quaternion acceleration covariance improved by almost an order of

magnitude versus not having the angular accelerometer observables. The

quaternion velocity and position covariance improved by 20 percent and

less than 10 percent respectively.

The covariance analysis assumed that the measurements are with-

out bias, including dimensional errors and cross axis sensitivities in

the accelerometer array. The real advantage of an angular accelerometer

would be to counteract the effect of such biases in the piezoresistive

accelerometer array. To obtain the true effect of the new observable

on the state covariance, bias states would have to be added to the

Kalman filter and their uncertainty included in the covariance

calculations.
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